问题 解答题

已知数列{an}的通项公式an=-2n+11,前n项和Sn

(1)求数列{an}的前n项和Sn

(2)|a1|+|a2|+|a3|+…+|a14|.

答案

(1)∵an=-2n+11,

∴an+1-an=-2(n+1)+11-(-2n+11)=-2,

∴数列{an}为公差为2的等差数列,又a1=9,

∴数列{an}的前n项和Sn=

(a1+an)×n
2
=
(9+11-2n)×n
2
=10n-n2

(2)由an=-2n+11≥0得:n≤

11
2
,又n∈N*

∴当n=1,2,…5时,an>0,当n≥6时,an<0,

∴|a1|+|a2|+|a3|+…+|a14|

=a1+a2+…+a5-a6-a7-…-a14

=-a1-a2-…-a5-a6-a7-…-a14+2(a1+a2+…+a5

=-

(a1+a14)×14
2
+2×
(a1+a5)×5
2

=-

(9-17)×14
2
+2×
(9+1)×5
2

=56+50

=106.

单项选择题
单项选择题