问题
解答题
已知数列{an}的通项公式an=-2n+11,前n项和Sn.
(1)求数列{an}的前n项和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.
答案
(1)∵an=-2n+11,
∴an+1-an=-2(n+1)+11-(-2n+11)=-2,
∴数列{an}为公差为2的等差数列,又a1=9,
∴数列{an}的前n项和Sn=
=(a1+an)×n 2
=10n-n2;(9+11-2n)×n 2
(2)由an=-2n+11≥0得:n≤
,又n∈N*,11 2
∴当n=1,2,…5时,an>0,当n≥6时,an<0,
∴|a1|+|a2|+|a3|+…+|a14|
=a1+a2+…+a5-a6-a7-…-a14
=-a1-a2-…-a5-a6-a7-…-a14+2(a1+a2+…+a5)
=-
+2×(a1+a14)×14 2 (a1+a5)×5 2
=-
+2×(9-17)×14 2 (9+1)×5 2
=56+50
=106.