问题
解答题
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角: (1)求第20行中从左到右的第4个数; (2)若第n行中从左到右第14与第15个数的比为
(3)求n阶(包括0阶)杨辉三角的所有数的和; (4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
|
答案
(1)C203=1140
(2)由
=C 13n C 14n
,即2 3
=14 n-13
,解得n=342 3
(3)1+2+22+…+2n=2n+1-1
(4)Cm-1m-1+Cmm-1+…+Cm+k-2m-1=Cm+k-1m
证明:左式=Cm-1m-1+Cmm-1+…+Cm+k-2m-1
=Cmm+Cmm-1+…+Cm+k-2m-1
Cm+1m+Cm+1m-1+…+Cm+k-2m-1
=…=Cm+k-2m+Cm+k-2m-1=右式