(I)函数f(x)的定义域为(0,-∞),
f′(x)=--2ax+1=
a>0,设g(x)=-2ax2+x-1,△=1-8a,
(1)当a≥,△≤0,g(x)≤0,
∴f′(x)≤0,函数f(x)在(0,+∞)上递减,
(2)当0<a<时,△>0,f′(x)=0可得x1=,x2=,
若f′(x)>0可得x1<x<x2,f(x)为增函数,
若f′(x)<0,可得0<x<x1或x>x2,f(x)为减函数,
∴函数f(x)的减区间为(0,x1),(x2,+∞);增区间为(x1,x2);
(II)由(I)当0<a<,函数f(x)有两个极值点x1,x2,
∴x1+x2=,x1x2=,
f(x1)+f(x2)=-lnx1-ax12+x1-lnx2-ax22+x2
=-ln(x1x2)-a(x12+x22)+(x1+x2)=-ln(x1x2)-a(x1+x2)2+2ax1x2+(x1+x2)
=-ln-a×+2a×=ln(2a)++1=lna++ln2+1
设h(a)=lna++ln2+1,
h′(a)=-=<0(0<a<),
所以h(a)在(0,)上递减,
h(a)>h()=ln++ln2+1=3-2ln2,
所以f(x1)+f(x2)>3-2ln2;