问题 解答题
已知函数f(x)=ln
1
x
-ax2+x(a>0)

(I)讨论f(x)的单调性;
(II)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-2ln2.
答案

(I)函数f(x)的定义域为(0,-∞),

f′(x)=-

1
x
-2ax+1=
-2ax2+x-1
x

a>0,设g(x)=-2ax2+x-1,△=1-8a,

(1)当a≥

1
8
,△≤0,g(x)≤0,

∴f′(x)≤0,函数f(x)在(0,+∞)上递减,

(2)当0<a<

1
8
时,△>0,f′(x)=0可得x1=
1-
1-8a
4a
,x2=
1+
1-8a
4a

若f′(x)>0可得x1<x<x2,f(x)为增函数,

若f′(x)<0,可得0<x<x1或x>x2,f(x)为减函数,

∴函数f(x)的减区间为(0,x1),(x2,+∞);增区间为(x1,x2);

(II)由(I)当0<a<

1
8
,函数f(x)有两个极值点x1,x2

∴x1+x2=

1
2a
,x1x2=
1
2a

f(x1)+f(x2)=-lnx1-ax12+x1-lnx2-ax22+x2

=-ln(x1x2)-a(x12+x22)+(x1+x2)=-ln(x1x2)-a(x1+x22+2ax1x2+(x1+x2

=-ln

1
2a
-a×
1
4a2
+2a×
1
2a
=ln(2a)+
1
4a
+1=lna+
1
4a
+ln2+1

设h(a)=lna+

1
4a
+ln2+1,

h′(a)=

1
a
-
1
4a2
=
4a-1
4a2
<0(0<a<
1
8
),

所以h(a)在(0,

1
8
)上递减,

h(a)>h(

1
8
)=ln
1
8
+
1
1
8
+ln2+1=3-2ln2,

所以f(x1)+f(x2)>3-2ln2;

单项选择题
单项选择题