问题 解答题

已知函数f(x)=x|x-a|-lnx.

(1)若a=1,求函数f(x)在区间[1,e]的最大值;

(2)求函数f(x)的单调区间;

(3)若f(x)>0恒成立,求a的取值范围.

答案

(1)若a=1,则f(x)=x|x-1|-lnx.

当x∈[1,e]时,f(x)=x2-x-lnx,

f(x)=2x-1-

1
x
=
2x2-x-1
x
>0,

所以f(x)在[1,e]上单调增,

f(x)max=f(e)=e2-e-1

(2)由于f(x)=x|x-a|-lnx,x∈(0,+∞).

(ⅰ)当a≤0时,则f(x)=x2-ax-lnx,

f(x)=2x-a-

1
x
=
2x2-ax-1
x

令f′(x)=0,得x0=

a+
a2+8
4
>0(负根舍去),

且当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0,

所以f(x)在(0,

a+
a2+8
4
)上单调递减,在(
a+
a2+8
4
,+∞)
上单调递增.

(ⅱ)当a>0时,

①当x≥a时,f(x)=2x-a-

1
x
=
2x2-ax-1
x

令f′(x)=0,得x1=

a+
a2+8
4
x=
a-
a2+8
4
<a
舍),

a+
a2+8
4
≤a,即a≥1,则f′(x)≥0,

所以f(x)在(a,+∞)上单调增;

a+
a2+8
4
>a,即0<a<1,则当x∈(0,x1)时,f′(x)<0;当x∈(x1,+∞)时,f′(x)>0,

所以f(x)在区间(0,

a+
a2+8
4
)上是单调减,在(
a+
a2+8
4
,+∞)
上单调增.

②当0<x<a时,f(x)=-2x+a-

1
x
=
-2x2+ax-1
x

令f′(x)=0,得-2x2+ax-1=0,记△=a2-8,

若△=a2-8≤0,即0<a≤2

2
,则f′(x)≤0,

故f(x)在(0,a)上单调减;

若△=a2-8>0,即a>2

2

则由f′(x)=0得x3=

a-
a2-8
4
x4=
a+
a2-8
4
,且0<x3<x4<a,

当x∈(0,x3)时,f′(x)<0;当x∈(x3,x4)时,f′(x)>0;当x∈(x4,+∞)时,f′(x)>0,

所以f(x)在区间(0,

a-
a2-8
4
)上是单调减,在(
a-
a2-8
4
a+
a2-8
4
)
上单调增;在(
a+
a2-8
4
,+∞)
上单调减.

综上所述,当a<1时,f(x)的单调递减区间是(0,

a+
a2+8
4
),单调递增区间是(
a+
a2+8
4
,+∞)

1≤a≤2

2
时,f(x)单调递减区间是(0,a),单调的递增区间是(a,+∞);

a>2

2
时,f(x)单调递减区间是(0,
a-
a2-8
4
)和(
a+
a2-8
4
,a)
,单调的递增区间是(
a-
a2-8
4
a+
a2-8
4
)
和(a,+∞).

(3)函数f(x)的定义域为x∈(0,+∞).

由f(x)>0,得|x-a|>

lnx
x
.*

(ⅰ)当x∈(0,1)时,|x-a|≥0,

lnx
x
<0,不等式*恒成立,所以a∈R;

(ⅱ)当x=1时,|1-a|≥0,

lnx
x
=0,所以a≠1;       

(ⅲ)当x>1时,不等式*恒成立等价于a<x-

lnx
x
恒成立或a>x+
lnx
x
恒成立.

h(x)=x-

lnx
x
,则h′(x)=
x2-1+lnx
x2

因为x>1,所以h'(x)>0,从而h(x)>1.

因为a<x-

lnx
x
恒成立等价于a<(h(x))min,所以a≤1.

g(x)=x+

lnx
x
,则g′(x)=
x2+1-lnx
x2

再令e(x)=x2+1-lnx,则e′(x)=2x-

1
x
>0在x∈(1,+∞)上恒成立,e(x)在x∈(1,+∞)上无最大值.

综上所述,满足条件的a的取值范围是(-∞,1).

阅读理解

Become a volunteer and help those who need your help in your community ( 社区 )! Volunteer work includes helping the poor, helping the families whose houses were destroyed by natural disasters ( 灾害 ) or creating green space for neighborhood families. Whichever service activity you choose, you have the “ power of one” to make a difference and create a real change in the community!

1. Our holiday volunteer jobs are open to all Americans. You don’t need any special skills to join and there are no age limits ( 限制). With biosphere Expedition ( 生物探险 ), you can be a wildlife and environmental volunteer for anywhere from two weeks to two months. You’ll work with local scientists, and the leaders from Biosphere Expedition will be by your side.

2. We need students at the age of 16 and up who study at school and want a chance to use their talents, skills and knowledge to help the little kids. Most of them have enough patience and are warm—hearted. Join the Volunteer Service Center Today !

Volunteers are the greatest people in the world. Let’s work together to make the world a better place.

小题1: The volunteers can ________ in the community.

A.look after pets

B.help the poor people

C.buy houses for the homeless

D.Clean up the yards小题2:The Biosphere Expedition is probably held ________.

A.for three months

B.in summer vacation

C.only by local scientists

D.between America and China小题3:If Wu Dong is ________ years old, he may join the volunteer Service Center.

A.11

B.13

C.15

D.16小题4:Which of the following is True?

A.The volunteers should create green space for all the families.

B.The volunteers can choose any service activity in the community.

C.To do the holiday volunteer work, special skills are needed.

D.A boy who doesn’t study at school can be a volunteer to help the little kids小题5: What is the best title for these three ads?

A.Volunteers Wanted

B.A Job Interview

C.An Expedition Club

D.Education Service

单项选择题