某商场将进价为30元的书包以40元售出,平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个.
(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;
(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元;
(3)请分析并回答售价在什么范围内商场就可获得利润.
解:(1)∵每个书包涨价x元,
∴y=(40﹣30+x)(600﹣10x)
=﹣10x2+500x+6000;
(2)∵y=﹣10x2+500x+6000=﹣10(x﹣25)2+12250 ,
∴当x=25时,y 有最大值12250,
即当书包售价为65元时,月最大利润为12250元,10000元不是月最大利润;
(3)解方程﹣10x2+500x+6000=0 ,
得:x1=60,x2=﹣10,
即当涨价60元时和降价10元时利润y 的值为0,
由该二次函数的图象性质可知,
当涨价大于60元时以及降价超过10元时利润y 的值为负,
所以书包售价在大于30元且低于100元时商场就有利润.