问题
解答题
901班小华的爸爸在国际商贸城开专卖店专销某种品牌的计算器,进价12元∕只,售价20元∕只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如:某人买20只计算器,于是每只降价0.10×(20-10)=1元,就可以按19元∕只的价格购买),但是最低价为16元∕只.
(1)顾客一次至少买多少只,才能以最低价购买?
(2)写出当一次购买x只时(x>10),利润y(元)与购买量x(只)之间的函数关系式.
(3)星期天,小华来到专卖店勤工俭学,上午做成了两笔生意,一是向顾客甲卖了46只,二是向顾客乙卖了50只,记账时小华发现卖50只反而比卖46只赚的钱少.为了使每次卖得越多赚钱越多,在其他促销条件不变的情况下,最低价16元∕只至少要提高到多少?为什么?
答案
(1)设需要购买x只,
则20-0.1(x-10)=16,
得x=50,
故一次至少要购买50只;
(2)当0≤x≤10时,y=(20-12)x=8x,即y=8x,
当10<x≤50时,y=[20-12-0.1(x-10)]x,
即y=-0.1x2+9x,
当x>50时,y=(16-12)x,即y=4x;
(3)当0<x≤50时,y=-0.1x2+9x,
当x=-
=45时,y有最大值202.5元;b 2a
此时售价为20-0.1×(45-10)=16.5(元),
当45<x≤50时,y随着x的增大而减小,
∴最低价至少要提高到16.5元/只.