问题
解答题
函数数列{fn(x)}满足:f1(x)=
(1)求f2(x),f3(x); (2)猜想fn(x)的表达式,并证明你的结论. |
答案
(1)f2(x)=f1(f1(x))=
=f1(x) 1+
(x)f 21
f3(x)=f1(f2(x))=x 1+2x2
=f2(x) 1+
(x)f 22 x 1+3x2
(2)猜想:fn(x)=
(n∈N*)x 1+nx2
下面用数学归纳法证明:
①当n=1时,f1(x)=
2,已知,显然成立x 1+x2
②假设当n=K(K∈N*)4时,猜想成立,即fk(x)=x 1+kx2
则当n=K+1时,fk+1(x)=f1(fk(x))=
=fk(x) 1+
(x)f 2k
=x 1+kx2 1+(
)2x 1+kx2 x 1+(k+1)x2
即对n=K+1时,猜想也成立.
结合①②可知:猜想fn(x)=
对一切n∈N*都成立.x 1+nx2