问题 填空题
已知O是锐角△ABC的外接圆圆心,∠A=θ,若
cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
,则m=______.(用θ表示)
答案

取AB中点D,则有

AO
=
AD
+
DO

代入

cosB
sinC
AB
+
cosC
sinB
AC
=2m
AO
得:

cosB
sinC
AB
+
cosC
sinB
AC
=2m(
AD
+
DO
),

OD
AB
,得
DO
AB
=0,

∴两边同乘

AB
,化简得:

cosB
sinC
AB
AB
+
cosC
sinB
AC
AB
=2m(
AD
+
DO
)•
AB
=m
AB
AB

cosB
sinC
c2+
cosC
sinB
bc•cosA=mc2

由正弦定理

a
sinA
=
b
sinB
=
c
sinC
化简得:

cosB
sinC
sin2C+
cosC
sinB
sinBsinCcosA=msin2C,

由sinC≠0,两边同时除以sinC得:cosB+cosAcosC=msinC,

∴m=

cosB+cosAcosC
sinC
=
-cos(A+C)+cosAcosC
sinC

=

-cosAcosC+sinAsinC+cosAcosC
sinC
=sinA,

又∠A=θ,

则m=sinθ.

故答案为:sinθ

单项选择题
判断题