问题 解答题

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.

(Ⅰ)求函数y=f(x)的解析式;

(Ⅱ)求函数y=f(x)的单调区间.

答案

(Ⅰ)∵f(x)的图象经过P(0,2),∴d=2,

∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a.

∵点M(-1,f(-1))处的切线方程为6x-y+7=0

∴f'(x)|x=-1=3x2+2bx+a|x=-1=3-2b+a=6①,

还可以得到,f(-1)=y=1,即点M(-1,1)满足f(x)方程,得到-1+b-a+2=1②

由①、②联立得b=a=-3

故所求的解析式是f(x)=x3-3x2-3x+2.

(Ⅱ)f'(x)=3x2-6x-3.,令3x2-6x-3=0,即x2-2x-1=0.

解得x1=1-

2
x2=1+
2
.当x<1-
2
,或x>1+
2
时,f′(x)>0

1-

2
<x<1+
2
时,f′(x)<0.

故f(x)的单调增区间为(-∞,1-

2
),(1+
2
,+∞);单调减区间为(1-
2
,1+
2

问答题 简答题
单项选择题