问题
填空题
已知二次函数y=ax2+bx+c的图象与x轴交于(1,0)和(x1,0),其中-2<x1<-1,与y轴交于正半轴上一点.下列结论:①b>0;②ac<
|
答案
∵抛物线与x轴的交点为(1,0)和(x1,0),-2<x1<-1,与y轴交于正半轴,
∴a<0,
∵-2<x1<-1,
∴-
<-1 2
<0,b 2a
∴b<0,b>a,故①错误,③错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,
∴ac<
b2,故②正确;1 4
∵抛物线与x轴的交点有一个为(1,0),
∴a+b+c=0,
∴b=-a-c,
∵b<0,b>a(已证),
∴-a-c<0,-a-c>a,
∴c>-a,c<-2a,
∴-a<c<-2a,故④正确,
综上所述,正确的结论有②④.
故答案为:②④.