问题
填空题
向量
|
答案
由于向量
=(m,1),a
=(1-n,1)满足b
∥a
,故m-(1-n)=0b
即正数m,n满足m+n=1,
则
+1 m
=(2 n
+1 m
)(m+n)=3+2 n
+n m
≥3+2m n
=3+2
•n m 2m n
.2
当且仅当
=n m
时,2m n
+1 m
取最小值3+22 n
.2
故答案为:3+2
.2
向量
|
由于向量
=(m,1),a
=(1-n,1)满足b
∥a
,故m-(1-n)=0b
即正数m,n满足m+n=1,
则
+1 m
=(2 n
+1 m
)(m+n)=3+2 n
+n m
≥3+2m n
=3+2
•n m 2m n
.2
当且仅当
=n m
时,2m n
+1 m
取最小值3+22 n
.2
故答案为:3+2
.2