问题 填空题

分解因式:(x4+x2-4)(x4+x2+3)+10=______.

答案

令x4+x2=y,

∴原式=(y-4)(y+3)+10

=y2-y-2

=(y+1)(y-2)

将x4+x2=y代入,

所以原式=(x4+x2+1)(x4+x2-2)

=(x4+x2+1)(x2+2)(x2-1)

=(x4+x2+1)(x2+2)(x+1)(x-1).

故答案为(x4+x2+1)(x2+2)(x+1)(x-1).

单项选择题
单项选择题