问题
解答题
A袋中装有大小相同的红球1个,白球2个,B袋中装有与A袋中相同大小的红球2个,白球3个.先从A中取出1个球投入B中,然后从B中取出2个球.设ξ表示从B中取出红球的个数.(1)求ξ=2时的概率;(2)求ξ的分布列和数学期望.
答案
(1)由题意可得:ξ=2表示从B中取出两个红球.
①从A中取一红球放入B中,再从B中取2红球的概率P=
?1 3
=C 23 C 26
,1 15
②从A中取一白球放入B中,再从B中取2红球的概率P=
?2 3
=C 22 C 26 2 45
∴P(ξ=2)=
+1 15
=2 45
,1 9
故ξ=2时的概率为:
.2 9
(2)由(1)的方式可知:P(ξ=0)=
?1 3
+C 23 C 26
?2 3
=C 24 C 26
,P(ξ=1)=1 3
?1 3
+C31?C31 C62
?2 3
=C21?C41 C62
,P(ξ=2)=5 9
+1 15
=2 45
,1 9
∴ξ的概率分布列为:
ξ | 0 | 1 | 2 | ||||||
P |
|
|
|
25 |
45 |
5 |
45 |
35 |
45 |
7 |
9 |