设{an}是由正数组成的等比数列,Sn是其前n项和. (1)证明
(2)是否存在常数c>0,使得
|
(1)证明:设{an}的公比为q,由题设a1>0,q>0.
(i)当q=1时,Sn=na1,从而
Sn•Sn+2-Sn+12
=na1•(n+2)a1-(n+1)2a12
=-a12<0
(ⅱ)当q≠1时,Sn=
,从而a1(1-qn) 1-q
Sn•Sn+2-Sn+12=
-
(1-qn)(1-qn+2)a 21 (1-q)2
(1-qn+1)2a 21 (1-q)2
=-a12qn<0.
由(i)和(ii)得Sn•Sn+2,<Sn+12.根据对数函数的单调性,知
lg(Sn•Sn+2)<lgSn+12,
即
<lgSn+1.lgSn+lgSn+2 2
(2)不存在.
要使
=lg(Sn+1-c).成立,则有lg(Sn-c)+lg(Sn+2-c) 2
(Sn-c)(Sn+2-c)=(Sn+1-c)2 Sn-c>0.
分两种情况讨论:
(i)当q=1时,
(Sn-c)(Sn+2-c)=(Sn+1-c)2
=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2
=-a12<0.
可知,不满足条件①,即不存在常数c>0,使结论成立.
(ii)当q≠1时,若条件①成立,因为
(Sn-c)(Sn+2-c)-(Sn+1-c)2
=[
-c][a1(1-qn) 1-q
-c]-[a1(1-qn+2) 1-q
-c]2a1(1-qn+1) 1-q
=-a1qn[a1-c(1-q)],
且a1qn≠0,故只能有a1-c(1-q)=0,即c=a1 1-q
此时,因为c>0,a1>0,所以0<q<1.
但0<q<1时,Sn-
=-a1 1-q
<0,不满足条件②,即不存在常数c>0,使结论成立.a1qn 1-q
综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使
=lg(Sn+1-c).lg(Sn-c)+lg(Sn+2-c) 2