问题 填空题
已知Sn=
1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
n
+
n+1
.若Sm=9,则m=______.
答案

an=

1
n
+
n+1

=

(
n
-
n+1
(
n
+
n+1
)(
n
-
n+1
=
n+1
-
n

1
1+
2
=
2
-1…(1)

1
2
+
3
=
3
-
2
…(2)

1
3
+2
=
4
-
3
…(3)

1
m
+
m+1
=
m+1
-
m
…(m)

将此m个式子相加,得

Sm=

1
1+
2
+
1
2
+
3
+
1
3
+2
+…+
1
m
+
m+1

=(

2
-1)+(
3
-
2
)+…+(
m+1
-
m

=

m+1
-1.

∵Sm=9,

m+1
-1=9⇒m=99

故答案为:99

问答题 简答题
问答题