问题
选择题
正项数列{an}满足a1=1,
|
答案
∵an+12=an2+an+
=(an+1 4
)2且an>01 2
∴an+1=an+1 2
∵a1=1
∴数列{an}是以1为首项,以
为公差的等差数列1 2
∴an=1+
(n-1)=1 2 1+n 2
∴
=1 anan+1
=4(4 (n+1)(n+2)
-1 n+1
)1 n+2
∴
+1 a1a2
+…+1 a2a3
=4(1 anan+1
-1 2
+1 3
-1 3
+…+1 4
-1 n+1
)1 n+2
=4(
-1 2
)1 n+2
故选A