问题 选择题
正项数列{an}满足a1=1,
a2n+1
=
a2n
+an+
1
4
,则
1
a1a2
+
1
a2a3
+…
1
anan+1
=(  )
A.2-
4
n+2
B.1-
2
n+2
C.4-
2
n+1
D.2-
4
n+1
答案

an+12=an2+an+

1
4
=(an+
1
2
)
2
且an>0

an+1=an+

1
2

∵a1=1

∴数列{an}是以1为首项,以

1
2
为公差的等差数列

an=1+

1
2
(n-1)=
1+n
2

1
anan+1
=
4
(n+1)(n+2)
=4(
1
n+1
-
1
n+2

1
a1a2
+
1
a2a3
+…+
1
anan+1
=4(
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2

=4(

1
2
-
1
n+2

故选A

单项选择题 A3/A4型题
单项选择题