问题
填空题
数列{an}满足a1=1,且对任意的正整数m,n都有am+n=am+an+mn,则
|
答案
令n=1,得an+1=a1+an+n=1+an+n,∴an+1-an=n+1
用叠加法:an=a1+(a2-a1)+…+(an-an-1)=1+2+…+n=n(n+1) 2
所以
=1 an
=2(2 n(n+1)
-1 n
)1 n+1
所以
+1 a1
+…+1 a2
+1 a2012
=2(1-1 a2013
+1 2
-1 2
+…+1 3
-1 2013
)=2×1 2014
=2013 2014 2013 1007
故答案为:2013 1007