问题 填空题
数列{an}满足a1=1,且对任意的正整数m,n都有am+n=am+an+mn,则
1
a1
+
1
a2
+…+
1
a2012
+
1
a2013
=______.
答案

令n=1,得an+1=a1+an+n=1+an+n,∴an+1-an=n+1

用叠加法:an=a1+(a2-a1)+…+(an-an-1)=1+2+…+n=

n(n+1)
2

所以

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1

所以

1
a1
+
1
a2
+…+
1
a2012
+
1
a2013
=2(1-
1
2
+
1
2
-
1
3
+…+
1
2013
-
1
2014
)
=2×
2013
2014
=
2013
1007

故答案为:

2013
1007

单项选择题