问题
解答题
已知 数列{an}中,a1=1,an+1=3Sn(n≥1)
(Ⅰ)求a2及a3的值;
(Ⅱ)求数列{an}前n项的和Sn.
答案
(Ⅰ)由an+1=3Sn(n≥1)及a1=1可得a2=3S1=3a1=3,a3=3S2=12
(Ⅱ)当n≥2时,
=an+1 an
=3Sn 3Sn-1
=Sn Sn-1
=1+Sn-1+an Sn-1
=1+3=4an Sn-1
因此a2,a3,…,an是以3为首项,公比为4的等比数列.
当n≥2时 Sn=1+
=4n-13(1-4n-1) 1-4
又n=1时,S1=1=41-1
综上可得:Sn=4n-1