问题 解答题
已知数列{an}中,a1=1,且an=
n
n-1
an-1+2n•3n-2
(n≥2,n∈N*).
(I)求a2,a3的值及数列{an}的通项公式;
(II)令bn=
3n-1
an
(n∈N*)
,数列{bn}的前n项和为Sn,试比较S2n与n的大小;
(III)令cn=
an+1
n+1
(n∈N*)
,数列{
2cn
(cn-1)2
}
的前n项和为Tn,求证:对任意n∈N*,都有Tn<2.
答案

(I)当n=2时,a2=

2
2-1
a2-1+2•2•32-2=2+4=6,

当n=3时,a3=

3
3-1
a3-1+2•3•33-2=9+18=27.

因为an=

n
n-1
an-1+2n•3n-2,所以
an
n
=
an-1
n-1
+2•3n-2

当n≥2时,由累加法得

an
n
-
a1
1
=2+2×3+2×32+…+2×3n-2

因为a1=1,所以n≥2时,有

an
n
=1+
2(1-3n-1)
1-3
=3n-1,即an=n•3n-1(n≥2)

又n=1时,a1=1•31-1=1

an=n•3n-1(n∈N*)

(II)n∈N*时,bn=

3n-1
an
=
1
n
,则S2n=1+
1
2
+
1
3
+…+
1
2n

记函数f(n)=S2n-n=(1+

1
2
+
1
3
+…+
1
2n
)-n,

所以f(n+1)=(1+

1
2
+
1
3
+…+
1
2n+1
)-(n+1).

f(n+1)-f(n)=(

1
2n+1
+
1
2n+2
+…+
1
2n+1
)-1<
2n
2n+1
-1<0.

所以f(n+1)<f(n).

由于f(1)=S21-1=(1+

1
2
)-1>0,此时S21>1f(2)=S22-2=(1+
1
2
+
1
3
+
1
4
)-2>0

此时S22>2f(3)=S23-3=(1+

1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
+
1
8
)-3<0,此时S23<3

由于f(n+1)<f(n),故n≥3时,f(n)≤f(3)<0,此时S2n<n

综上所述,当n=1,2时,S2n>n;当n≥3(n∈N*)时,S2n<n

(III)证明:对于cn=

an+1
n+1
=3n,有
2cn
(cn-1)2
=
3n
(3n-1)2

当n≥2时,

3n
(3n-1)2
3n
(3n-1)(3n-3)
=
3n-1
(3n-1)(3n-1-1)
=
1
3n-1-1
-
1
3n-1

所以当n≥2时,Tn=

3
2
+
32
(32-1)2
+…+
3n
(3n-1)2
3
2
+(
1
2
-
1
32-1
)+(
1
32-1
-
1
33-1
)+…+(
1
3n-1-1
-
1
3n-1
)=2-
1
3n-1
<2

T1=

3
2
<2.

故对n∈N*,Tn<2得证.

选择题
单项选择题