问题 解答题

数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2

(1)求常数p的值;

(2)证明:数列{an}是等差数列.

答案

(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2

∴a1=a2,与已知矛盾,故p≠1.则a1=0.

当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.

∵a1≠a2,故p=

1
2

(2)由已知Sn=

1
2
nan,a1=0.

n≥2时,an=Sn-Sn-1=

1
2
nan-
1
2
(n-1)an-1

an
an-1
=
n-1
n-2
.则
an-1
an-2
=
n-2
n-3
a3
a2
=
2
1

an
a2
=n-1.∴an=(n-1)a2,an-an-1=a2

故{an}是以a2为公差,以a1为首项的等差数列.

单项选择题 B1型题
选择题