问题 填空题
已知数列{an}中,a1=1,(an,an+1)在x-y+1=0上,sn为{an}前n项和,则
1
s1
+
1
s2
+
1
s3
+…+
1
s10
=______.
答案

∵(an,an+1)在x-y+1=0上,

∴an-an+1+1=0,

∴数列{an}是以a1=1为首相,1为公差的等差数列,

∴sn=n+

n(n-1)
2
=
n(n+1)
2

1
sn
=
2
n(n+1)
=2(
1
n
-
1
n+1
 ),

1
s1
+
1
s2
+
1
s3
+…+
1
s10
=2(1-
1
11
 )=
20
11

故答案为

20
11

判断题
单项选择题