问题 解答题
已知正项数列{an}满足
a 1
=P(0<P<1),且
a n+1
=
a n
a n
+1

(1)求数列的通项an
(2)求证:
a 1
2
+
a 2
3
+
a 3
4
+…+
a n
n+1
<1
答案

由已知an+1=

an
an+1
可得,
1
an+1
=
an+1
an
=
1
an
+1
1
a1
=
1
p

1
an+1
-
1
an
=1

数列{

1
an
}是以
1
p
为首项,以1为公差的等差数列

1
an
=
1
p
+(n-1)×1=n-1+
1
p
an=
1
n-1+
1
p

∵0<P<1∴

1
p
-1>0

an
n+1
=
1
(n+1)(n-1+
1
p
)
1
n(n+1)
=
1
n
-
1
n+1

a1
2
+
a2
3
+…+ 
an
n+1
 <1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
<1
即证

选择题
单项选择题