问题
解答题
已知正项数列{an}满足
(1)求数列的通项an; (2)求证:
|
答案
由已知an+1=
可得,an an+1
=1 an+1
=an+1 an
+1,1 an
=1 a1 1 p
即
-1 an+1
=11 an
数列{
}是以1 an
为首项,以1为公差的等差数列1 p
∴
=1 an
+(n-1)×1=n-1+1 p
即an=1 p 1 n-1+ 1 p
∵0<P<1∴
-1>01 p
∴
=an n+1
<1 (n+1)(n-1+
)1 p
=1 n(n+1)
-1 n 1 n+1
+a1 2
+…+ a2 3
<1-an n+1
+1 2
-1 2
+…+1 3
-1 n
=1-1 n+1
=1 n+1
<1即证n n+1