(1)∵Sn=A+Ban+C,A=0,B=3,C=-2,
∴Sn=3an-2,
∴当n=1时,a1=3a1-2,解得a1=1;
当n≥2时,an=Sn-Sn-1=3an-3an-1,
整理,得2an=3an-1,
∴=,
∴an=()n-1.
(2)∵Sn=A+Ban+C,A=1,B=,C=,
∴Sn=+an+,
∴当n=1时,a1=+a1+,解得a1=,
当n≥2时,an=Sn-Sn-1=-+an-an-1
整理,得(an+an-1)(an-an-1-)=0,
∵an>0,∴an-an-1=,
∴{an}是首项为,公差为的等差数列,
∴Sn=+=.
(3)若数列{an}是公比为q的等比数列,
①当q=1时,an=a1,Sn=na1
由Sn=A+Ban+C,得na1=A+Ba1+C恒成立
∴a1=0,与数列{an}是等比数列矛盾;
②当q≠±1,q≠0时,an=a1qn-1,Sn=qn-,
由Sn=A+Ban+C恒成立,
得A××q2n+(B×-)×qn+C+=0对于一切正整数n都成立
∴A=0,B=≠1或或0,C≠0,
事实上,当A=0,B≠1或或0,C≠0时,
Sn=Ban+Ca1=≠0,
n≥2时,an=Sn-Sn-1=Ban-Ban-1,
得=≠0或-1
∴数列{an}是以为首项,以为公比的等比数列.