问题
填空题
若数列{an}通项公式为an=
|
答案
∵an=
=1 n(n+1)
-1 n
,1 n+1
∴a1+a2+…+a5
=(1-
)+(1 2
-1 2
)+…+(1 3
-1 5
)1 6
=1-1 6
=
.5 6
故答案为:
.5 6
若数列{an}通项公式为an=
|
∵an=
=1 n(n+1)
-1 n
,1 n+1
∴a1+a2+…+a5
=(1-
)+(1 2
-1 2
)+…+(1 3
-1 5
)1 6
=1-1 6
=
.5 6
故答案为:
.5 6