问题 解答题
观察下列等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

将以上三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=______.
(2)直接写出下列各式的计算结果:
1
1×2
+
1
2×3
+…+
1
2009×2010
=______; ②
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______.
(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…+
1
2008×2010
=______.
答案

(1)根据:

1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4

可知:

1
n(n+1)
=
1
n
-
1
(n+1)

(2)①

1
1×2
+
1
2×3
+…+
1
2009×2010

=1-

1
2
+
1
2
-
1
3
+…+
1
2009
-
1
2010
=
2009
2010

②进而推广:

1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-

1
n+1
=
n
n+1

(3)

1
2×4
+
1
4×6
+
1
6×8
+…+
1
2008×2010

=

1
2
1
2
-
1
4
)+
1
2
1
4
-
1
6
)+…+
1
2
1
2008
-
1
2010
),

=

1
2
1
2
-
1
2010
),

=

251
1005

填空题
选择题