问题 解答题
已知函数F(X)=a•bx的图象过点A(4,
1
4
)和B(5,1).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)记an=log2f(n),n是正整数,Sn是数列{an}的前n项和,求满足不等式anSn≤0的n的值.
答案

(Ⅰ)由于函数f(x)=a•bx的图象过点A(4,

1
4
)和B(5,1).

所以

1
4
=a•b4   ①
1=a• b5   ② 
 ②÷①得b=4,从而a=
1
1024

故f(x)=

1
1024
•4x=22x-10   (4分)

(Ⅱ)由题意an=log222n-10=2n-10.

∴数列{an}是等差数列,所以Sn=

(a1+an)•n
2
=n(n-9),…(8分)

anSn=2n(n-5)(n-9),由anSn≤0 得(n-5)(n-9),5≤n≤9

∴n=5,6,7,8,9

问答题
单项选择题 B1型题