问题 解答题

直线l:y=kx+1与双曲线C:2x2﹣y2=1的右支交于不同的两点A、B.

(I)求实数k的取值范围;

(II)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

答案

解:(Ⅰ)将直线l的方程y=kx+1代入双曲线C的方程2x2﹣y2=1后,

整理得(k2﹣2)x2+2kx+2=0.①

依题意,直线l与双曲线C的右支交于不同两点,

解得k的取值范围是﹣2<k<

(Ⅱ)设A、B两点的坐标分别为(x1,y1)、(x2,y2),

则由①式得

假设存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F(c,0).

则由FA⊥FB得:(x1﹣c)(x2﹣c)+y1y2=0.即(x1﹣c)(x2﹣c)+(kx1+1)(kx2+1)=0.

整理得(k2+1)x1x2+(k﹣c)(x1+x2)+c2+1=0.③

把②式及代入③式化简得

解得

可知使得以线段AB为直径的圆经过双曲线C的右焦点.

填空题
单项选择题