问题
解答题
设数列{an}的前n项和为Sn,且3Sn=an+4.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=3Sn求数列{bn}的前n项和Tn.
答案
(I)∵3Sn=an+4,∴3Sn+1=an+1+4,
两式相减得:3(Sn+1-Sn)=an+1-an,∴
=-an+1 an
,1 2
又∵3a1=a1+4,∴a1=2,
∴an=2(-
)n-1,1 2
(II)由(I)得bn=3Sn=an+4,
∴Tn=b1+b2+b3+…+bn=(a1+4)+(a2+4)+…+(an+4)=Sn+4n,
又∵Sn=
=an+4 3
(-2 3
)n-1+1 2
,4 3
∴Tn=
(-2 3
)n-1+1 2
,4 3
∴Tn=
(-2 3
)n-1+4n+1 2
;4 3