问题 解答题

设数列{an}的前n项和为Sn,且3Sn=an+4.

(I)求数列{an}的通项公式;

(II)若数列{bn}满足bn=3Sn求数列{bn}的前n项和Tn

答案

(I)∵3Sn=an+4,∴3Sn+1=an+1+4,

两式相减得:3(Sn+1-Sn)=an+1-an,∴

an+1
an
=-
1
2

又∵3a1=a1+4,∴a1=2,

∴an=2(-

1
2
n-1

(II)由(I)得bn=3Sn=an+4,

∴Tn=b1+b2+b3+…+bn=(a1+4)+(a2+4)+…+(an+4)=Sn+4n,

又∵Sn=

an+4
3
=
2
3
(-
1
2
n-1+
4
3

∴Tn=

2
3
(-
1
2
n-1+
4
3

∴Tn=

2
3
(-
1
2
n-1+4n+
4
3

判断题
填空题