问题
解答题
已知点(1,
(Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)若数列{
|
答案
(Ⅰ)∵f(1)=a=1 2
∴f(x)=(
)x,1 2
∴a1=f(1)-c=
-c,1 2
∴a2=[f(2)-c]-[f(1)-c]=-
,a3=[f(3)-c]-[f(2)-c]=-1 4 1 8
又数列{an}成等比数列,
a1=
=-a 22 a3
,1 2
∵a1=
-c1 2
∴-
=1 2
-c,∴c=11 2
又公比q=
=a2 a1 1 2
所以an=-
(1 2
)n-1=-(1 2
)n,n∈N;1 2
∵Sn-Sn-1=(
)(Sn-Sn-1
+Sn
)=Sn-1
+Sn
(n≥2)Sn-1
又bn>0,
>0,∴Sn
-Sn
=1;Sn-1
∴数列{
}构成一个首项为1公差为1的等差数列,Sn
∴
=1+(n-1)×1=n,Sn=n2Sn
当n≥2,bn=Sn-Sn-1=n2-(n-1)2=2n-1;
又b1=c=1适合上式,∴bn=2n-1(n∈N);
(Ⅱ)Tn=
+1 b1b2
+…+1 b2b3
=1 bnbn+1
+1 1×2
+1 3×5
+…+1 5×7 1 (2n-1)×(2n+1)
=
(1-1 2
)+1 3
(1 2
-1 3
)+1 5
(1 2
-1 5
)+…+1 7
(1 2
-1 2n-1
)=1 2n+1
(1-1 2
)=1 2n+1 n 2n+1
由Tn=
>n 2n+1
,得n>999 2010 333 4
满足Tn>
的最小正整数为84.999 2010