问题 解答题
已知函数f(x)=lnx-x+1(x∈[1,+∞)),数列{an}满足a1=e,
an+1
an
=e(n∈N*)

(1)求数列{an}的通项公式an
(2)求f(a1)+f(a2)+…+f(an);
(3)求证:1•2•3•…•n≤e
n(n-1)
2
(n∈N*)
答案

(1)∵

an+1
an
=e,∴{an}是等比数列,又a1=e,∴数列{an}的通项公式为:an=en

(2)由(1)知,f(an)=lnen-en+1=(n+1)-en

∴f(a1)+f(a2)+…+f(an)=[2+3+…+(n+1)]-(e+e2+…+en

=

n2+3n
2
-
e-en+1
1-e

(3)由函数f(x)=lnx-x+1,得f′(x)=

1
x
-1,又x≥1,∴f'(x)≤0,

∴f(x)递减,∴f(x)≤f(1),

即f(x)≤0,也就是lnx≤x-1,

于是:ln1+ln2+…+lnn≤0+1+…+(n-1),

ln(1•2•3•…•n)≤

n(n-1)
2

1•2•3…•n≤e

n(n-1)
2

选择题
单项选择题