问题
解答题
已知直线x+2y+m=0(m∈R)与抛物线C:y2=x相交与不同的两点A,B.
(1)求实数m的取值范围;
(2)在抛物线C上是否存在一点P,对(1)中任意m的值,都有直线PA与PB的倾斜角互补?若存在,求出点P的坐标;若不存在,说明理由.
答案
(1)联立直线x+2y+m=0(m∈R)和抛物线C:y2=x,并整理得y2+2y+m=0,
∵直线x+2y+m=0(m∈R)与抛物线C:y2=x相交于不同的两点A,B.
∴判别式△=4-4m>0,∴m<1,即实数m的取值范围{m|m<1}.
(2)设A(x1,y1),B(x2,y2),P(x0,y0)
kpA=
,y1-y0 x1-x0
kPB=y2-y0 x2-x0
+y1-y0 x1-x0
=0,y2-y0 x2-x0
∴y12=x1,y22=x2,y02=x0
+1 y1+y0
,∴-2y0=y1+y21 y2+y0
由(1)得:y0=1
y0=x0=1
所以存在P(1,1),使得对(1)中任意的m的值,都有直线PA与PB的斜率互为相反数.