问题
解答题
已知数列{an}满足a1=1,an+1=
(1)求a2,a3,a4; (2)求证:数列{bn}是等比数列,并求其通项公式; (3)若Cn=-nbn,Sn为为数列{Cn}的前n项和,求Sn-2. |
答案
(1)a2=
,a3=-3 2
,a4=5 2
;7 4
(2)证明:
=bn+1 bn
=a2n+2-2 a2n-2
=
a2n+1+2n+1-21 2 a2n-2
(a2n-4n)+2n-11 2 a2n-2
=
=
a2n-11 2 a2n-2
,1 2
又b1=a2-2=-
∴数列{bn}是公比为1 2
的等比数列1 2
bn=(-
)•(1 2
)n-1=-(1 2
)n1 2
(3)由(2)知cn=n(
)n1 2
Sn=
+2×(1 2
)2+3×(1 2
)3+…+n(1 2
)n①1 2
Sn=(1 2
)2+2×(1 2
)3+…+(n-1)(1 2
)n+n(1 2
)n+1②1 2
①-②得:
Sn=1 2
+(1 2
)2+(1 2
)3+…+(1 2
)n-n(1 2
)n+11 2
=
-n•
[1-(1 2
)n]1 2 1- 1 2
=1-1 2n+1
-1 2n n 2n+1
∴Sn=2-
-2 2n
=2-n 2n n+2 2n
∴Sn-2=-n+2 2n