问题 解答题
已知数列{an}中,a1=2,a2=10,对任意n∈N*有an+2=2an+1+3an成立.
(I)若{an+1+λan}是等比数列,求λ的值;
(II)求数列{an}的通项公式;
(III)证明:
1
a1
+
1
a2
+
1
a3
+…+
1
an
2
3
对任意n∈N*成立.
答案

(I)设an+2+λan+1=μ(an+1+λan),则an+2=(μ-λ)an+1+λμan

μ-λ=2
λμ=3
,得
μ=3
λ=1
或者
μ=-1
λ=-3
,即λ=1或λ=-3;

(II)由(I)知 an+2+an+1=3(an+1+an),而a2+a1=12,

故an+1+an=(a2+a1)•3n-1=12•3n-1=4•3n,①

同理an+2-3an+1=-(an+1-3an)有an+1-3an=(a2-3a1)•(-1)n-1=4•(-1)n-1,②

①-②得  4an=4•3n-4•(-1)n-1,即an=3n+(-1)n

(III)证明:当n=2k(k∈N*)时,注意到32k+1-32k-1=2•32k-1>0,于是

1
an
+
1
an+1
=
1
a2k
+
1
a2k+1
=
1
32k+1
+
1
32k+1-1
=
32k+1+32k
(32k+1)(32k+1-1)
=
32k+1+32k
32k32k+1+32k+1-32k-1
32k+1+32k
32k32k+1
=
1
32k
+
1
32k+1

显然当n=1时,不等式成立;对于n≥2,

当n为奇数时,

1
a1
+
1
a2
+
1
a3
+…+
1
an
=
1
a1
+(
1
a2
+
1
a3
)+…+(
1
an-1
+
1
an
)=
1
2
+
1
32
+
1
33
+…+
1
3n-1
+
1
3n
=
1
2
+
3
2
×
1
32
(1-
1
3n-1
)
=
1
2
+
1
6
(1-
1
3n-1
)
1
2
+
1
6
=
2
3

当n为偶数时,

1
a1
+
1
a2
+
1
a3
+…+
1
an
1
a1
+
1
a2
+
1
a3
+…+
1
an
+
1
an+1
=
1
2
+
1
32
+
1
33
+…+
1
3n
+
1
3n+1
=
1
2
+
3
2
×
1
32
(1-
1
3n
)
=
1
2
+
1
6
(1-
1
3n
)
1
2
+
1
6
=
2
3

综上  对任意n∈N*

1
a1
+
1
a2
+
1
a3
+…+
1
an
2
3
成立.

单项选择题
单项选择题 B1型题