已知数列{an}中,a1=2,a2=10,对任意n∈N*有an+2=2an+1+3an成立. (I)若{an+1+λan}是等比数列,求λ的值; (II)求数列{an}的通项公式; (III)证明:
|
(I)设an+2+λan+1=μ(an+1+λan),则an+2=(μ-λ)an+1+λμan,
令
,得μ-λ=2 λμ=3
或者μ=3 λ=1
,即λ=1或λ=-3;μ=-1 λ=-3
(II)由(I)知 an+2+an+1=3(an+1+an),而a2+a1=12,
故an+1+an=(a2+a1)•3n-1=12•3n-1=4•3n,①
同理an+2-3an+1=-(an+1-3an)有an+1-3an=(a2-3a1)•(-1)n-1=4•(-1)n-1,②
①-②得 4an=4•3n-4•(-1)n-1,即an=3n+(-1)n.
(III)证明:当n=2k(k∈N*)时,注意到32k+1-32k-1=2•32k-1>0,于是
+1 an
=1 an+1
+1 a2k
=1 a2k+1
+1 32k+1
=1 32k+1-1
=32k+1+32k (32k+1)(32k+1-1)
<32k+1+32k 32k•32k+1+32k+1-32k-1
=32k+1+32k 32k•32k+1
+1 32k
.1 32k+1
显然当n=1时,不等式成立;对于n≥2,
当n为奇数时,
+1 a1
+1 a2
+…+1 a3
=1 an
+(1 a1
+1 a2
)+…+(1 a3
+1 an-1
)=1 an
+1 2
+1 32
+…+1 33
+1 3n-1
=1 3n
+1 2
×3 2
(1-1 32
)=1 3n-1
+1 2
(1-1 6
)<1 3n-1
+1 2
=1 6
;2 3
当n为偶数时,
+1 a1
+1 a2
+…+1 a3
<1 an
+1 a1
+1 a2
+…+1 a3
+1 an
=1 an+1
+1 2
+1 32
+…+1 33
+1 3n
=1 3n+1
+1 2
×3 2
(1-1 32
)=1 3n
+1 2
(1-1 6
)<1 3n
+1 2
=1 6
.2 3
综上 对任意n∈N*有
+1 a1
+1 a2
+…+1 a3
<1 an
成立.2 3