问题
解答题
已知等比数列{an}的首项a1=l,数列{bn}满足首项b1=3,且bn=an•an+1(n∈N*)
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列•
答案
(1)∵bn=an•an+1,a1=1,b1=3,
∴b1=a1•a2
∴a2=3
又∵数列{an}是等比数列,
∴a2=a1q
∴q=3
∴an=3n-1;
(2)∵bn=an•an+1,
∴
=bn+1 bn
=an+1•an+2 an•an+1
=an+2 an
=323n+1 3n-1
又∵b1=3
∴数列{bn}是以首项b1=3,公比q=9的等比数列.