问题
解答题
已知一非零的向量列
(1)计算|
(2)设θn(n≥2)是
|
答案
(1)∵非零向量列{
}满足:an
=(1,1),a1
=(xn,yn)=an
(xn-1-yn-1,xn-1+yn-1) (n≥2),1 2
∴
=(1,1),a1
=a2
(0,2)=(0,1),1 2
=a3
(-1,1)=(-1 2
,1 2
),1 2
∴|
|=a1
=12+12
,|2
|=a2
=1,|02+12
|=a3
=(-
)2+(1 2
)21 2
.2 2
∵|
|=an
,xn2+yn2
∴|
|=an+1
=xn+12+yn+12
=(
)2+(xn-yn 2
)2xn+yn 2 2 2
,xn2+yn2
∴
=|
|an+1 |
|an
(常数),2 2
∴{|
|}是首项|an
|=a1
,公比q=2
的等比数列.2 2
(2)∵
•an-1
=(xn-1,yn-1)•an
(xn-1-yn-1,xn-1+yn-1)1 2
=
(xn-12+yn-12)=1 2
|1 2
|2,an-1
∴cosθn=
=
•an-1 an |
|•|an-1
|an
=
|1 2
|an-1 |
|an
,2 2
∴θn=
,n≥2.π 4
∴bn=
=π 4n(n-1)θn
=π 4n(n-1)• π 4
=1 n(n-1)
-1 n-1
,1 n
∴Sn=b2+b3+…+bn
=(1-
)+(1 2
-1 2
)+…+(1 3
-1 n-1
)1 n
=1-
.1 n
∴S2013=1-
=1 2013
.2012 2013