问题
解答题
设数列{an}的首项a1=a≠
(1)求a2,a3; (2)判断数列{bn}是否为等比数列,并证明你的结论; (3)当a>
|
答案
(I)a2=a+
,a3=1 4
(a+1 2
)1 4
(II)∵bn=a2n-1-
=1 4
(a2n-3+1 2
)-1 4
=1 4
(a2n-3-1 2
)=1 4
bn-11 2
∵b1=a1-
=a-1 4
≠01 4
∴{bn}\为
的等比数列1 2
(III)当a>
时,1 4
∵{bn}为正项等比数列,
∴bn+1+bn+2+bn+…+bn+m=bn+1
<2bn+1=bn1-(
)m1 2 1- 1 2
当n≥4时,sn-s3=-b4-b5+…+
bn<b2-b3-b4-…-bn<0sinn |sinn|
sn-s1=b2+b3-b4-b5+…+
bn>b2-b3-b4-…-bn>0sinn |sinn|
当n≥4,s1<sn<s3,s1<s2<s3
故sn的最大值为s3=
(a+7 4
),最小值为s1=a+1 4 1 4