问题 解答题
设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.
答案

(I)a2=a+

1
4
,a3=
1
2
(a+
1
4

(II)∵bn=a2n-1-

1
4
=
1
2
(a2n-3+
1
4
)-
1
4
=
1
2
(a2n-3-
1
4
)=
1
2
bn-1

∵b1=a1-

1
4
=a-
1
4
≠0

{bn}\为

1
2
的等比数列

(III)当a>

1
4
时,

∵{bn}为正项等比数列,

∴bn+1+bn+2+bn+…+bn+m=bn+1

1-(
1
2
)
m
1-
1
2
<2bn+1=bn

当n≥4时,sn-s3=-b4-b5+…+

sinn
|sinn|
bn<b2-b3-b4-…-bn<0

sn-s1=b2+b3-b4-b5+…+

sinn
|sinn|
bn>b2-b3-b4-…-bn>0

当n≥4,s1<sn<s3,s1<s2<s3

故sn的最大值为s3=

7
4
(a+
1
4
),最小值为s1=a+
1
4

问答题 简答题
单项选择题 A1型题