问题 解答题

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q。

 (1)若点P(0,2)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;

 (2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围。

答案

解:(1)由题意知:|AQ|=|AF|,

∵∠PQF=90°,

∴A为PF 的中点,

,且点A在抛物线上,代入得

所以抛物线方程为

(2)设A(x,y),y2=2px,根据题意

∠MAF为锐角

∵y2=2px,

所以得对x≥0都成立

都成立

①若,即时,只要使成立

整理得,且

所以

②若,即

只要使成立,得m>0

所以

由①②得m的取值范围是0<m<,且

问答题
单项选择题