问题
选择题
已知函数f(x)满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y)且在区间[3,7]上是增函数,在区间[4,6]上的最大值为1007,最小值为-2,则2f(-6)+f(-4)=( )
A.-2012
B.-2011
C.-2010
D.2010
答案
令x=y=0,得f(0)=f(0)+f(0),解得f(0)=0.
令y=-x,得f(0)=f(x)+f(-x),
故f(x)+f(-x)=0,
所以函数f(x)为奇函数.
由函数f(x)在区间[3,7]上是增函数,可知函数f(x)在区间[4,6]上也是增函数,
故最大值为f(6)=1007,最小值为f(4)=-2.
而f(-6)=-f(6)=-1007,f(-4)=-f(4)=2,
所以2f(-6)+f(-4)=2×(-1007)+2=-2012.
故选A