问题
解答题
已知{an}是等差数列,其中a3+a7=18,a6=11.
(Ⅰ)求数列{an}通项an;
(Ⅱ)若数列{bn}满足bn=an+2n-1(n∈N+),求数列{bn}的前n项和Tn.
答案
(Ⅰ)∵a3+a7=2a5=18
∴a5=9
∴d=a6-a5=11-9=2,a1=1
∴an=2n-1
(Ⅱ)∵bn=an+2n-1(n∈N+)
∴bn=2n-1+2n-1
∴Tn=(1+20)+(3+21)+…+[(2n-1)+2n-1]
=[1+3+…+(2n-1)]+(20+21+…+2n-1)
=n2+2n-1