问题 解答题
在等差数列{an}中,a2+a3=7,a4+a5+a6=18.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求
1
S3
+
1
S6
+…+
1
S3n
答案

(1)设等差数列{an}的公差为d,依题意,

a1+d+a1+2d=7
a1+3d+a1+4d+a1+5d=18
,解得a1=2,d=1,

∴an=2+(n-1)×1=n+1…5′

(2)S3n=

3n(a1+a3n)
2
=
3n(2+3n+1)
2
=
9n(n+1)
2

1
S3n
=
2
9n(n+1)
=
2
9
1
n
-
1
n+1
)…9′

1
S3
+
1
S6
+…+
1
S3n
=
2
9
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=
2n
9(n+1)
…12′

填空题
单项选择题 B1型题