问题
解答题
在等差数列{an}中,a2+a3=7,a4+a5+a6=18. (1)求数列{an}的通项公式; (2)设数列{an}的前n项和为Sn,求
|
答案
(1)设等差数列{an}的公差为d,依题意,
,解得a1=2,d=1,a1+d+a1+2d=7 a1+3d+a1+4d+a1+5d=18
∴an=2+(n-1)×1=n+1…5′
(2)S3n=
=3n(a1+a3n) 2
=3n(2+3n+1) 2
,9n(n+1) 2
∴
=1 S3n
=2 9n(n+1)
(2 9
-1 n
)…9′1 n+1
∴
+1 S3
+…+1 S6
=1 S3n
[(1-2 9
)+(1 2
-1 2
)+…+(1 3
-1 n
)]=1 n+1
…12′2n 9(n+1)