已知数列{an}的前n项和Sn=n(n+2),数列{bn}的前n项和为Tn,且有
(1)求数列{an},{bn}的通项an,bn; (2)设cn=
(3)在(2)的前提下,设Mn是数列{cn}的前n项和,证明:Mn≥4-
|
(1)∵Sn=n(n+2),
∴当n≥2时,an=Sn-Sn-1=2n+1
当n=1时,a1=S1=3满足上式
∴an=2n+1
∵
=1Tn+1-bn+1 Tn+bn
∴Tn+1-Tn=2bn-1
∴bn+1=2bn-1
∴bn+1-1=2(bn-1)
∴{bn-1}是公比为2的等比数列
∴bn-1=(b1-1)•2n-1=2n
∴bn =2n+1
(2)cn=
=an bn
,数列{cn}为递减数列2n+1 2n+1
证明:∵cn+1-cn=
-2n+3 2n+1+1 2n+1 2n+1
=
<0(1-2n)•2n+2 (2n+1+1)(2n+1)
∴数列{cn}为递减数列
(3)证明:∵cn=
=an bn
≥2n+1 2n+1
=2n 2n n 2n-1
∴Mn=c1+c2+…+cn≥1+
+2 2
+…+3 22 n 2n-1
令rn=1+
+2 2
+…+3 22
①n 2n-1
∴
rn=1 2
+1 2
+2 22
+…+3 23
②n 2n
①-②:
rn=1+1 2
+1 2
+1 22
+…+1 23
-1 2n-1
=2-n 2n n+2 2n
∴rn=4-n+2 2n-1
∴1+
+2 2
+…+3 22
=4-n 2n-1 n+2 2n-1
∴Mn≥4-n+2 2n-1