问题
选择题
已知f(x)是定义在R上的奇函数,且f(1)=1,若将f(x)的图象向右平移一个单位后,则得到一个偶函数的图象,则f(1)+f(2)+f(3)+…+f(2009)=( )
A.0
B.1
C.-1
D.-1004.5
答案
∵(x)是定义在R上的奇函数
∴f(0)=0,f(-x)=-f(x)
因为将f(x)的图象向右平移一个单位后,则得到一个偶函数的图象,
所以有f(x-1)=f(-x-1)⇒f(x-1)=-f(x+1)⇒f(t+2)=-f(t)⇒f(t+4)=f(t).
即4是函数的周期.
∴f(3)=f(-1)=-f(1)=-1;f(2)=-f(0)=0;f(4)=f(0)=0.
∴f(1)+f(2)+f(3)+…+f(2009)
=502×[f(1)+f(2)+f(3)+f(4)]+f(2009)
=502×[1+0+(-1)+0]+f(1)
=f(1)=1.
故选B