问题
解答题
已知数列{an}是首项为a1=
(1)求证:{bn}是等差数列; (2)求数列{cn}的前n项和Sn; (3)若Cn≤
|
答案
(1)由题意知,an=(
)n.1 4
∵bn+2=3log
an,b1+2=3log1 4
a11 4
∴b1=1
∴bn+1-bn=3log
an+1=3log1 4
an=3log1 4 1 4
=3logan+1 a n
q=31 4
∴数列{bn}是首项为1,公差为3的等差数列.
(2)由(1)知,an=(
)n.bn=3n-21 4
∴Cn=(3n-2)×(
)n.1 4
∴Sn=1×
+4×(1 4
)2+…+(3n-2)×(1 4
)n,1 4
于是
Sn=1×(1 4
)2+4×(1 4
)3+…(3n-2)×(1 4
)n+1,1 4
两式相减得
Sn=3 4
+3×[(1 4
)2+(1 4
)3+…+(1 4
)n)-(3n-2)×(1 4
)n+1,1 4
=
-(3n-2)×(1 2
)n+1,1 4
∴Sn=
-2 3
×(12n+8 3
)n+11 4
(3)∵Cn+1-Cn=(3n+1)×(
)n+1-(3n-2)×(1 4
)n=9(1-n)×(1 4
)n+1,1 4
∴当n=1时,C2=C1=1 4
当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn
∴当n=1时,Cn取最大值是1 4
又Cn≤
m2+m-11 4
∴
m2+m-1≥1 4 1 4
即m2+4m-5≥0解得m≥1或m≤-5.