问题
解答题
已知正项等差数列{an}的前n项和为Sn,其中a1≠a2,am、ak、ah都是数列{an}中满足ah-ak=ak-am的任意项. (Ⅰ)证明:m+h=2k; (Ⅱ)证明:Sm•Sh≤Sk2; (III)若
|
答案
(I)设数列{an}的公差为d,由题意a1<0,d>0.
∵ah-ak=ak-am,∴(h-k)d=(k-m)d,∴m+h=2k.…(2分)
(II)Sm•Sh=
•m(a1+am) 2
=h(a1+ah) 2
(a1+am)(a1+ah)≤mh 4
•[1 4
]2[m+h 2
]2=a1+am+a1+ah 2
(a1+ak)2k2=[1 4
]2=(a1+ak)k 2
,∴Sm•Sh≤Sk2.…(6分)S 2k
(III)取m=1,k=2,h=3,显然a1,a2,a3满足a3-a2=a2-a1.…(7分)
由
、Sm
、Sk
也成等差数列,则Sh
+a1
=23a1+3d
.2a1+d
两边平方得2
=4a1+d,a1(3a1+3d)
再两边平方整理得4a12-4a1d+d2=0,即(2a1-d)2=0,
∴d=2a1=4.…(9分)
∴an=(2n-1)a,Sn=2n2,
∴
=Sn
n.,显然这时数列{an}满足题意. …(10分)2
∴Sn-S1=2n2-2=2(n2-1).
∴
=1 Sn-S1
•1 2
=1 n2-1
(1 4
-1 n-1
)(n∈N*,n≥3.)…(12分)1 n+1
则Tn=
(1 4
-1 2
+1 4
-1 3
+…+1 5
-1 n-2
+1 n
-1 n-1
)=1 n+1
(1 4
+1 2
-1 3
-1 n
)1 n+1
=
[1 4
-5 6
]<2n+1 n(n+1)
.…(14分)5 24