问题 解答题
已知正项等差数列{an}的前n项和为Sn,其中a1≠a2,am、ak、ah都是数列{an}中满足ah-ak=ak-am的任意项.
(Ⅰ)证明:m+h=2k;
(Ⅱ)证明:Sm•Sh≤Sk2
(III)若
Sm
Sk
Sh
也成等差数列,且a1=2,求数列{
1
Sn-S1
}(n∈N*,n≥3)
的前n项和Tn
5
24
答案

(I)设数列{an}的公差为d,由题意a1<0,d>0.

∵ah-ak=ak-am,∴(h-k)d=(k-m)d,∴m+h=2k.…(2分)

(II)SmSh=

m(a1+am)
2
h(a1+ah)
2
=
mh
4
(a1+am)(a1+ah)
1
4
•[
m+h
2
]2[
a1+am+a1+ah
2
]2
=
1
4
(a1+ak)2k2=[
(a1+ak)k
2
]2=
S2k
,∴Sm•Sh≤Sk2.…(6分)

(III)取m=1,k=2,h=3,显然a1,a2,a3满足a3-a2=a2-a1.…(7分)

Sm
Sk
Sh
也成等差数列,则
a1
+
3a1+3d
=2
2a1+d

两边平方得2

a1(3a1+3d)
=4a1+d,

再两边平方整理得4a12-4a1d+d2=0,即(2a1-d)2=0,

∴d=2a1=4.…(9分)

∴an=(2n-1)a,Sn=2n2

Sn
=
2
n.,显然这时数列{an}满足题意.                         …(10分)

∴Sn-S1=2n2-2=2(n2-1).

1
Sn-S1
=
1
2
1
n2-1
=
1
4
(
1
n-1
-
1
n+1
)(n∈N*,n≥3.)…(12分)

Tn=

1
4
(
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-2
-
1
n
+
1
n-1
-
1
n+1
)=
1
4
(
1
2
+
1
3
-
1
n
-
1
n+1
)

=

1
4
[
5
6
-
2n+1
n(n+1)
]<
5
24
.…(14分)

填空题
单项选择题