问题 解答题

已知数列{xn}中,x1,x5是方程log22x-8log2x+12=0的两根,等差数列{yn}满足yn=log2xn,且其公差为负数,

(1)求数列{yn}的通项公式;

(2)证明:数列{xn}为等比数列;

(3)设数列{xn}的前n项和为Sn,若对一切正整数n,Sn<a恒成立,求实数a的取值范围.

答案

(1)∵x1,x5是方程log22x-8log2x+12=0的两根,

∴log2x1+log2x5=8,log2x1•log2x5=12,

∵等差数列{yn}满足yn=log2xn,且其公差为负数,

∴log2x1=6,log2x5=2.

y1=log2x1=6,y5=log2x5=2,yn=7-n.

(2)∵yn=log2xn=7-n,yn+1=log2xn+1=6-n

xn+1
xn
=
26-n
27-n
=
1
2

∴数列{xn}为等比数列.

(3)Sn=

26(1-
1
2n
)
1-
1
2
=128(1-
1
2n
)<128
lim
n→∞
Sn=128

故所求a的取值范围为a≥128.

判断题
单项选择题