问题
解答题
已知等差数列{an}满足:a3=7,a5+a7=26,{an]的前n项和为Sn. (1)求an及Sn; (2)令bn=
|
答案
(1)设等差数列{an}的公差为d,
∵等差数列{an}满足:a3=7,a5+a7=26,
∴a1+2d=7①,2a1+10d=26②,
由①②可得,a1=3,d=2,
∴an=3+(n-1)×2=2n+1,
Sn=
=n(a1+an) 2
=n(n+2);n(3+2n+1) 2
(2)由(1)知an=2n+1,所以bn=
=1 an2-1
(1 4
-1 n
),1 n+1
所以Tn=
(1-1 4
+1 2
-1 2
+…+1 3
-1 n
)=1 n+1
(1-1 4
)=1 n+1
,n 4(n+1)
即数列{bn}的前n项和Tn=
.n 4(n+1)