问题
解答题
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上. (1)求证:{an}是等差数列; (2)设
|
答案
(1)证明:∵点P(an,an+1)(n∈N+)在直线x-y+1=0上,
∴an-an+1+1=0,即an+1-an=1,
∴an是以公差d=1的等差数列.
(2)证明:∵等差数列{an}中,a1=1,d=1,
∴Sn=
,n(n+1) 2
=2(1 Sn
-1 n
),1 n+1
∴Tn=2(1-
+1 2
-1 2
+…+1 3
-1 n
)=2(1-1 n+1
) <2.1 n+1