问题 解答题
已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求证:{an}是等差数列;
(2)设
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
=Tn,求证Tn<2.
答案

(1)证明:∵点P(an,an+1)(n∈N+)在直线x-y+1=0上,

∴an-an+1+1=0,即an+1-an=1,

∴an是以公差d=1的等差数列.

(2)证明:∵等差数列{an}中,a1=1,d=1,

Sn=

n(n+1)
2
1
Sn
=2(
1
n
-
1
n+1
)

Tn=2(1-

1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)=2(1-
1
n+1
) <2.

单项选择题
单项选择题