问题
选择题
已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=( )
A.2
B.4
C.6
D.8
答案
答案:B
法1.由余弦定理得
cos∠F1PF2=
∴|PF1|•|PF2|=4
法2; 由焦点三角形面积公式得:
∴|PF1|•|PF2|=4;
故选B.
已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=( )
A.2
B.4
C.6
D.8
答案:B
法1.由余弦定理得
cos∠F1PF2=
∴|PF1|•|PF2|=4
法2; 由焦点三角形面积公式得:
∴|PF1|•|PF2|=4;
故选B.