问题
填空题
若函数f(x)=kx2+(k+1)x+3是偶函数,则f(x)的递减区间是______.
答案
函数f(x)=kx2+(k+1)x+3是偶函数
所以k+1=0
解得k=-1
所以f(x)=-x2+3
此二次函数的对称轴为x=0,开口向下
所以f(x)的递减区间是[0,+∞)
故答案为[0,+∞)
若函数f(x)=kx2+(k+1)x+3是偶函数,则f(x)的递减区间是______.
函数f(x)=kx2+(k+1)x+3是偶函数
所以k+1=0
解得k=-1
所以f(x)=-x2+3
此二次函数的对称轴为x=0,开口向下
所以f(x)的递减区间是[0,+∞)
故答案为[0,+∞)