问题 填空题

以F1(-1,0)、F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是 ______.

答案

由题意知,c=1,a2-b2=1,故可设椭圆的方程为

x2
b2+1
+
y2
b2
=1,

离心率的平方为

1
b2+1
   ①,∵直线x-y+3=0与椭圆有公共点,将直线方程代入椭圆方程得

(2b2+1)x2+6(b2+1)x+8b2+9-b4=0,由△=36(b4+2b2+1)-4(2b2+1)( 8b2+9-b4 )≥0,

∴b4-3b2-4≥0,∴b2≥4,或 b2≤-1 (舍去),∴b2 的最小值为4,

∴①的最大值为

1
5
,此时,a2=b2+1=5,

∴离心率最大的椭圆方程是

x2
5
+
y2
4
=1,

故答案为:

x2
5
+
y2
4
=1.

单项选择题
判断题