问题
填空题
以F1(-1,0)、F2(1,0)为焦点且与直线x-y+3=0有公共点的椭圆中,离心率最大的椭圆方程是 ______.
答案
由题意知,c=1,a2-b2=1,故可设椭圆的方程为
+x2 b2+1
=1,y2 b2
离心率的平方为
①,∵直线x-y+3=0与椭圆有公共点,将直线方程代入椭圆方程得 1 b2+1
(2b2+1)x2+6(b2+1)x+8b2+9-b4=0,由△=36(b4+2b2+1)-4(2b2+1)( 8b2+9-b4 )≥0,
∴b4-3b2-4≥0,∴b2≥4,或 b2≤-1 (舍去),∴b2 的最小值为4,
∴①的最大值为
,此时,a2=b2+1=5,1 5
∴离心率最大的椭圆方程是
+x2 5
=1,y2 4
故答案为:
+x2 5
=1.y2 4